Photooxidation of Iron(II) Evolving Hydrogen

S. PAPP and L. VINCZE

Department of General and Inorganic Chemistry, Veszprém University of Chemical Engineering, Veszprém, Hungary Received December 12, 1979

Introduction

Although some results are known in connection with the photooxidation of iron(II) in solution evolving hydrogen [1-3], a systematic investigation is missing on concentration and anion dependence of the phenomenon.

Experimental

The investigations were carried out under N_2 atmosphere at 30 ± 3 °C in a photoreactor, made at our department, having the lamp in a central position. The lamp used was a TUNGSRAM HgLI type high pressure one with 80 W power. Iron(III) traces in iron(II) sulphate solutions were reduced by iron powder before beginning the experiments. Fe(III) formed during photooxidation was measured spectrophotometrically at 304 nm and H₂ evolved was determined with a gas-chromatograph. We found a good agreement with Stein's data [2], that mole ratio of iron(III) and H₂ was 2:1. Sampling was made from

 $10^3 \times C_{Fe(III)} \text{ (mol dm}^{-3}\text{)}$ Time (h) C_{FeSO4} (mol dm⁻³) 0.05 0.5 1.0 0.1 1 0.21 0.21 0.44 0.57 0.71 0.38 0.42 0.75 2 3 0.62 0.98 1.05 0.55 4 0.71 0.80 1.27 1.26 5 0.88 0.91 1.44 1.56 $C_{H_2SO_4} = 0.1 \text{ mol dm}^{-3}$ 1 0.30 0.42 0.81 0.42 0.72 2 0.56 0.71 1.53 3 0.75 0.98 2.03 1.12 4 1.05 1.27 2.57 1.41 $C_{H_2SO_4} = 0.5 \text{ mol dm}^{-3}$ 1 0.40 0.46 0.50 0.45 0.74 0.84 0.70 2 0.86 3 0.95 1.16 1.26 1.03 1.33 4 1.37 1.46 1.68 $C_{H_2SO_4} = 1.0 \text{ mol dm}^{-3}$ 1 0.30 0.47 0.44 0.48 0.67 2 0.55 0.63 0.67 3 0.78 1.09 0.88 0.87 4 1.04 1.36 1.19 1.20 1.49 1.34 5 1.32 1.61

Fig. 1. Sections from the CFe(III) vs. time diagrams.

TABLE 1. Concentration of Fe(III) in the FeSO₄-H₂SO₄ system; $C_{H_2SO_4} = 0.05 \text{ mol dm}^{-3}$.

Time (h)	$10^3 \times C_{Fe(III)} \text{ (mol dm}^{-3}\text{)}$					
	C_{FeSO_4} (mol dm ⁻³)					
	0.05	0.10	0.50	1.0		
	C _{Na2} SO4	$C_{Na_2SO_4} = 0.05 \text{ mol dm}^{-3}$				
1	0.172	0.246	0.438	0.691		
2	0.352	0.452	0.722	0.679		
3	0.540	0.636	1.10	1.14		
4	0.687	0.838	1.39	1.29		
5	0.839	1.032	1.70	1.42		
	$C_{Na_2SO_4} = 0.45 \text{ mol dm}^{-3}$					
1	0.183	0.239	0.425	0.477		
2	0.345	0.473	0.648	0.647		
3	0.528	0.645	0.804	0.820		
4	0.634	0.843	1.05	1.01		
5	0.807	1.01	1.23	1.17		
	$C_{Na_2SO_4} = 0.95 \text{ mol dm}^{-3}$					
1	0.158	0.225	0.379	0.356		
2	0.377	0.372	0.528	0.441		
3	0.467	0.536	0.712	0.605		
4	0.552	0.705	0.902	0.819		
5	0.716	0.890	1.08	1.033		

TABLE II. Concentration of Fe(III) in the FeSO₄-Na₂-SO₄(H₂SO₄) system; $C_{H_2SO_4} = 0.05 \text{ mol dm}^{-3}$.

the properly constructed reactor with a syringe every 20 minutes.

Concentrations of iron(II) sulphate and H_2SO_4 were 0.05, 0.1, 0.5 and 1.0 mol dm⁻³, respectively. Thus 16 systems were investigated. Generally irradiations were made for 5 hours. In another series iron(II) sulphate concentrations were the same but by 0.05 mol dm⁻³ H_2SO_4 concentration the 0.1, 0.5 and 1.0 mol dm⁻³ sulphate contents were adjusted by Na_2 - SO_4 .

Results and Discussion

From the experimental data it can be stated that the concentration of iron(III) under irradiation depends on time approximately linearly and its maximum value could achieve $1.5-2.5 \times 10^{-3}$ mol dm⁻³ at the given experimental conditions. In contrast the dependence of photooxidation rate on concentration of iron(II) and H₂SO₄ could not be already surveyed so easily at once. It can be seen, however, that in the case of more concentrated iron(II) and H₂SO₄ solutions the rate of photooxidation decreased again. To get a clear picture, sections were made from the iron(III) concentration vs. time diagrams at data for the first, second, third, fourth

Fig. 2. The $FeSO_4-H_2SO_4$ system; investigated area: \land [1], \bullet [2], \bullet [3], -.- this work.

Fig. 3. The FeSO₄-Na₂SO₄(H₂SO₄) system.

and fifth hours (Table I and Fig. 1). Thus it has unambiguously come to light that an iron(II) sulphate-sulphuric acid concentration pair exists where photooxidation rate has a maximum.

The level-line diagram of the fourth hour's sections for the FeSO₄-H₂SO₄ pair is shown in Fig. 2. From this diagram it is clear that in the system of 0.5 MFeSO₄-0.1 M H₂SO₄ the photooxidation rate has a maximum. In Fig. 2 are plotted other results which were published at this time [1-3], illustrating that even the most interesting area has been avoided by former investigations. The results of FeSO₄-Na₂SO₄(H₂SO₄) systems are similar (Table II and Fig. 3), only their iron(III) contents produced are less.

In Table III the Mössbauer parameters of frozen solutions of $FeSO_4-H_2SO_4-H_2O$ systems are shown at proper concentrations. It can be seen that by constant quadrupole splitting the lowest isomer shift (i.e. the lowest 3d-electron density at the iron

TABLE III. Mössbauer Parameters of the FeSO₄-H₂SO₄-H₂OSystems in Frozen Solutions^a (77 K).

$FeSO_4$ (mol dm ⁻³)	$H_2 SO_4$ (mol dm ⁻³)	δ (mm s ⁻¹)	ΔE (mm s ⁻¹)
0.25	0.05	1.15	3.44
1.00	0.05	1.15	3.45
0.10	0.10	1.18	3.49
0.50	0.10	1.06	3.49
0.316	0.158	1.12	3.48
1.00	0.20	1.12	3.49
1.00	1.00	1.19	3.48

^aRadiation source: ⁵⁷Co-Pt. Error of measurements: ±0.03 mm/s. Reference: Na₂[Fe(CN)₅NO] • 2H₂O.

nuclei) are obtained even at the marked concentration pair.

On the basis of these results ion-pair or sulphatecomplex structures can be assumed in the solution, where the excitation process or escape for electrons are favoured.

Further investigations are in progress.

References

- 1 L. J. Heidt, M. G. Mullin, W. B. Martin and A. M. J. Beatty, J. Phys. Chem., 66, 336 (1962).
- 2 J. Jortner and G. Stein, J. Phys. Chem., 66, 1258 (1962); 66 1264 (1962).
- 3 E. Hayon and J. Weiss, J. Chem. Soc., 3866 (1960).